Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36297345

ABSTRACT

Corema (C.) album belongs to the family Ericaceae and can be found in the Iberian Peninsula, especially on the coastal areas facing the Atlantic coast. C. album berries have been used for centuries in traditional medicine. Recent studies have revealed that not only the berries but also the leaves have relevant antioxidant, antiproliferative, and anti-inflammatory properties, bringing this plant to the forefront of discussion. A systematic review of the literature was carried out to summarize the phenolic compounds and bioactive properties identified in C. album berries and leaves and to search for research gaps on this topic. The search was conducted in three electronic databases (PubMed, SCOPUS, and Web of Science) using PRISMA methodology. The inclusion criteria were the chemical compositions of the berries, leaves, or their extracts and their bioactive properties. The exclusion criteria were agronomic and archaeological research. The number of studies concerning phenolic compounds' composition and the bioactive properties of C. album berries and leaves is still limited (11 articles). However, the variety of polyphenolic compounds identified make it possible to infer new insights into their putative mechanism of action towards the suppression of NF-kB transcription factor activation, the modulation of inflammatory mediators/enzymes, the induction of apoptosis, the modulation of mitogen activated protein kinase, cell cycle arrest, and the reduction of oxidative stress. These factors can be of major relevance concerning the future use of C. album as nutraceuticals, food supplements, or medicines. Nevertheless, more scientific evidence concerning C. album's bioactivity is required.

2.
Life (Basel) ; 12(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36294989

ABSTRACT

The treatment of hypertension is of major importance to reduce the risk of cardiovascular disease, the leading cause of death worldwide. Angiotensin-converting enzyme (ACE) inhibitors are anti-hypertensive drugs associated with several side effects. Natural products, namely bioactive peptides from brewing by-products, brewers' spent grain (BSG), and yeast (BSY), are promising alternatives since they can inhibit ACE in vitro. However, the oral intake of these peptides may modify their expected inhibitory effect owing to possible changes in active peptides' bioavailability, which have not been assessed so far. The goal of this study was to simulate oral administration to evaluate BSG/BSY peptides' effectiveness by submitting protein hydrolysates sequentially to simulated gastrointestinal digestion, intestinal absorption (Caco-2 cells), and liver metabolism (HepG2 cells). MTT assay was used to assess BSG/BSY protein hydrolysates safeness. The ACE-inhibitory potential of initial and final protein hydrolysates (BSY, BSG, and a new product, MIX) were tested using a fluorometric assay and compared with captopril (1 µM, an ACE-inhibitory drug). Simulation of oral administration greatly increased BSY and MIX protein hydrolysates' ACE-inhibitory capacity, though final MIX and BSG revealed greater ACE-inhibitory potential than captopril. Notwithstanding, all final protein hydrolysates presented ACE-inhibitory capacity, thus being promising compounds to manage hypertension.

3.
Biomedicines ; 10(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36009448

ABSTRACT

Hypertension is of unknown aetiology, with sympathetic nervous system hyperactivation being one of the possible contributors. Hypertension may have a developmental origin, owing to the exposure to adverse factors during the intrauterine period. Our hypothesis is that sympathetic hyperinnervation may be implicated in hypertension of developmental origins, being this is a common feature with essential hypertension. Two-animal models were used: spontaneously hypertensive rats (SHR-model of essential hypertension) and offspring from dams exposed to undernutrition (MUN-model of developmental hypertension), with their respective controls. In adult males, we assessed systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), sympathetic nerve function (3H-tritium release), sympathetic innervation (immunohistochemistry) and vascular remodelling (histology). MUN showed higher SBP/DBP, but not HR, while SHR exhibited higher SBP/DBP/HR. Regarding the mesenteric arteries, MUN and SHR showed reduced lumen, increased media and adventitial thickness and increased wall/lumen and connective tissue compared to respective controls. Regarding sympathetic nerve activation, MUN and SHR showed higher tritium release compared to controls. Total tritium tissue/tyrosine hydroxylase detection was higher in SHR and MUN adventitia arteries compared to respective controls. In conclusion, sympathetic hyperinnervation may be one of the contributors to vascular remodelling and hypertension in rats exposed to undernutrition during intrauterine life, which is a common feature with spontaneous hypertension.

4.
Curr Issues Mol Biol ; 44(8): 3598-3610, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36005142

ABSTRACT

Corema (C.) album is a shrub endemic to the Atlantic coast and has been described as yielding beneficial effects for human health. Nevertheless, studies concerning the bioactivity of C. album leaves are scarce. This study aims at investigating the anticancer potential and mode of action, of an hydroethanolic extract of C. album leaves (ECAL) on triple-negative breast cancer. This is a poor survival breast cancer subtype, owing to its high risk of distant reappearance, metastasis rates and the probability of relapse. The ECAL ability to prevent tumor progression through (i) the inhibition of cell proliferation (cell viability); (ii) the induction of apoptosis (morphological changes, TUNEL assay, caspase-3 cleaved) and (iii) the induction of DNA damage (PARP1 and γH2AX) with (iv) the involvement of NF-κB and of ERK1/2 pathways (AlphaScreen assay) was evaluated. ECAL activated the apoptotic pathway (through caspase-3) along with the inhibition of ERK and NF-κB pathways causing DNA damage and cell death. The large polyphenolic content of ECAL was presumed to be accountable for these effects. The extract of C. album leaves can target multiple pathways and, thus, can block more than one possible means of disease progression, evidencing the anticancer therapeutic potential from a plant source.

5.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163158

ABSTRACT

Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.


Subject(s)
Fetal Development , Fetal Nutrition Disorders/physiopathology , Maternal Nutritional Physiological Phenomena , Mesenteric Arteries/pathology , Oxidative Stress , Renin-Angiotensin System , Vascular Remodeling , Animals , Blood Pressure , Female , Male , Mesenteric Arteries/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism
6.
Curr Pharm Des ; 26(30): 3733-3747, 2020.
Article in English | MEDLINE | ID: mdl-32611296

ABSTRACT

The endothelium has a crucial role in proper hemodynamics. Inflammatory bowel disease (IBD) is mainly a chronic inflammatory condition of the gastrointestinal tract. However, considerable evidence points to high cardiovascular risk in patients with IBD. This review positions the basic mechanisms of endothelial dysfunction in the IBD setting (both clinical and experimental). Furthermore, we review the main effects of drugs used to treat IBD in endothelial (dys)function. Moreover, we leave challenging points for enlarging the therapeutic arsenal for IBD with new or repurposed drugs that target endothelial dysfunction besides inflammation.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Vascular Diseases , Humans , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy
7.
Molecules ; 22(5)2017 May 06.
Article in English | MEDLINE | ID: mdl-28481238

ABSTRACT

Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors-A1, A2A, A2B and A3-have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors' activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.


Subject(s)
Adenosine/chemistry , Adenosine/pharmacology , Cardiovascular System/drug effects , Receptors, Purinergic P1/chemistry , Humans , Hypertension/drug therapy , Ligands , Molecular Targeted Therapy , Nucleoside Transport Proteins/antagonists & inhibitors , Nucleoside Transport Proteins/metabolism , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects
8.
PLoS One ; 10(6): e0129224, 2015.
Article in English | MEDLINE | ID: mdl-26075386

ABSTRACT

Nitric oxide (NO) seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS) inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS) was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells) and Confocal Microscopy. Results indicated that: 1) in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2) in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3) confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.


Subject(s)
Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Neurons/physiology , Nitric Oxide/metabolism , Synaptic Transmission/physiology , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine Kinase/antagonists & inhibitors , Animals , Hemodynamics , Male , Mesenteric Arteries/drug effects , Nitric Oxide Synthase Type I/metabolism , Rats , Receptor, Adenosine A1/metabolism , Regional Blood Flow
9.
PLoS One ; 9(8): e105540, 2014.
Article in English | MEDLINE | ID: mdl-25158061

ABSTRACT

BACKGROUND: Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. METHODS AND RESULTS: The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. CONCLUSION: Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.


Subject(s)
Adenosine/metabolism , Hypertension/physiopathology , Mesenteric Arteries/innervation , Mesenteric Arteries/physiopathology , Synaptic Transmission , Adenosine Triphosphate/metabolism , Animals , Hypertension/metabolism , Male , Mesenteric Arteries/metabolism , Norepinephrine/metabolism , Rats , Rats, Inbred SHR , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...